Extensions 1→N→G→Q→1 with N=C6 and Q=C322Q8

Direct product G=N×Q with N=C6 and Q=C322Q8
dρLabelID
C6×C322Q848C6xC3^2:2Q8432,657

Semidirect products G=N:Q with N=C6 and Q=C322Q8
extensionφ:Q→Aut NdρLabelID
C61(C322Q8) = C2×C334Q8φ: C322Q8/C3×Dic3C2 ⊆ Aut C6144C6:1(C3^2:2Q8)432,683
C62(C322Q8) = C2×C335Q8φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C648C6:2(C3^2:2Q8)432,695

Non-split extensions G=N.Q with N=C6 and Q=C322Q8
extensionφ:Q→Aut NdρLabelID
C6.1(C322Q8) = Dic9⋊Dic3φ: C322Q8/C3×Dic3C2 ⊆ Aut C6144C6.1(C3^2:2Q8)432,88
C6.2(C322Q8) = C18.Dic6φ: C322Q8/C3×Dic3C2 ⊆ Aut C6144C6.2(C3^2:2Q8)432,89
C6.3(C322Q8) = Dic3⋊Dic9φ: C322Q8/C3×Dic3C2 ⊆ Aut C6144C6.3(C3^2:2Q8)432,90
C6.4(C322Q8) = C2×C9⋊Dic6φ: C322Q8/C3×Dic3C2 ⊆ Aut C6144C6.4(C3^2:2Q8)432,303
C6.5(C322Q8) = C62.80D6φ: C322Q8/C3×Dic3C2 ⊆ Aut C6144C6.5(C3^2:2Q8)432,452
C6.6(C322Q8) = C62.81D6φ: C322Q8/C3×Dic3C2 ⊆ Aut C6144C6.6(C3^2:2Q8)432,453
C6.7(C322Q8) = C62.82D6φ: C322Q8/C3×Dic3C2 ⊆ Aut C6144C6.7(C3^2:2Q8)432,454
C6.8(C322Q8) = C62.D6φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C6144C6.8(C3^2:2Q8)432,95
C6.9(C322Q8) = C62.3D6φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C6144C6.9(C3^2:2Q8)432,96
C6.10(C322Q8) = C2×He32Q8φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C6144C6.10(C3^2:2Q8)432,316
C6.11(C322Q8) = C62.85D6φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C648C6.11(C3^2:2Q8)432,462
C6.12(C322Q8) = C3×Dic3⋊Dic3central extension (φ=1)48C6.12(C3^2:2Q8)432,428
C6.13(C322Q8) = C3×C62.C22central extension (φ=1)48C6.13(C3^2:2Q8)432,429

׿
×
𝔽